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ANALYSIS OF A RADIAL-FLOW HALL CURRENT 

MAGNETOHYDRODYNAMIC GENERATOR 

by Lester D. N icho ls  

Lewis Research Center  

SUMMARY 

A magnetohydrodynamic generator of two-disk geometry operating in the Hall mode 
is considered. The generator working fluid flows radially between the two disks and a 
constant magnetic field is applied parallel to the axis of the disks. 
the Mach number is small  compared to one and where viscous effects can be neglected 
a r e  analyzed. The power output, power-output density, and efficiency of this generator 
a r e  determined and compared to the linear Hall generator. 
the linear generator has higher efficiency and power output for a given working fluid and 
entrance velocity. 

The conditions where 

The calculations indicate that 

INTRODUCTION 

A magnetohydrodynamic (MHD) generator operating in the Hall mode (i. e . ,  the Hall 
current is the load current) is considered. Generators of this type a r e  particularly well 
suited for operation with large Hall parameters (ref. 1). A Hall generator with the Far- 
aday electric field equal to zero can be shown to give a large amount of nonequilibrium 
ionization (ref. 2,  eq. (23)). In linear generators the Faraday field is made to vanish by 
segmenting the electrodes and then shorting opposite pairs of segments. 
cuit for  the Faraday current may lead to difficulties (ref. 3) so that a geometry having 
the Faraday field always equal to zero is of interest. Such a configuration is shown in 
figure 1 where the working fluid flows radially between the two disks with a constant 
magnetic field applied parallel to  the disk axis. 
that reported in reference 3. 

erator in t e rms  of power density and efficiency. Emphasis is placed upon parametric 

The short c i r -  

The design is functionally similar to 

This report analytically compares the performance of a disk and a linear Hall gen- 
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Figure 1. - Sketch of radial-flow generator 

performance evaluation that illustrates the effect of the 
the geometrical arrangement. Several simplifying as- 
sumptions are used; namely, that viscous effects a r e  
negligible, magnetic Reynolds number and Mach number 
are small, and electrical properties are independent of 
magnetic field and current. Although these assumptions 
may not always be valid (especially if electron heating 
is imparted), they are made for both generators so that 
the analysis is selfconsistent and should permit a rea- 
sonable comparison of the configuration effects. 

EQUATIONS DESCRIBING GENERATOR 

The momentum equation for an inviscid fluid carrying a current and flowing in a 
magnetic field is (ref. 4) 

- c -  p - +  Dii g r a d p =  j x B  
Dt 

(a list of symbols is given in appendix A). If the magnetic Reynolds number is small 
compared to 1 then the induced magnetic fields can be neglected in comparison to the 
applied magnetic field strength (ref. 4). For this study B will be only in the 
z direction. (See fig. 1 for coordinate sketch. ) The velocity and current density vectors 
can be written: 

ii= v;. + wi) 

- A A 

j = j r r + j  cp 
cp 

so that equation (1) in component form becomes: 

p ( v z - f ) + * = j  dv w B 
dr  

PV-- I d  (rw) = -jrB 
r d r  

For a flow with the Mach number 
axially symmetric flow requires: 

2 

small compared to one the continuity equation for 
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d - (rv) = 0 
dr 

(4) 

For a plasma with nonzero Hall parameters for ions and electrons and with the cur-  
rent flowing in a plane perpendicular to the magnetic field, Ohm's law becomes (ref. 5, 

eq. (49)): 

This equation can be solved for j (ref. 5,  eq. 50): 

5 X (g + 
B 

X B) -1 - - 
+ Pepi)(E + U'X B) + Be 

where 

- 
For the coordinate system used herein, the equation for  j can be written in component 
form as shown: 

j r  = c k l  + PePi)(Er + wB) + PevB] (5) 

The requirement that d i v 7  = 0 is 

d - (rj,) = 0 
dr  

which yields 

This value for rjr may be substituted into equation (5) which, when solved for E, 
yields 
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Using this value for E, the azimuthal current j may be obtained from equa- 
50 

tion (6) 

Equations (4) and (3) can be solved for v and w 

1; 
v = v  

jlB r1 - 

PVl 
w = - ( 22rr2) (11) 

Equations (7), (8), (9), (lo), and (11) express all components of current, electronic 
field, and velocity as functions of radius in terms of initial conditions at r = r 1' 

POWER-OUTPUT DENSITY 

The equations in the preceding section describe a generator (positive power output), 
only for a certain range of initial current density, j,. The smallest j, of interest is 
the open-circuit value, namely zero. The largest value is the short-circuit current, 
that is, the current which flows when the load voltage is zero. The load voltage can be 
expressed as 

where 
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goB 2 rl 

2pv1 [(1+ + P,"] 
- 6 =  

It is evident from equation (12) that the short-circuit current is 

lBPe 
1 + 6f ( l  + pepi) 

(j,) = - 
s c  

It is convenient to express the load voltage as a fraction of the open-circuit voltage. Let 
this fraction be called the load parameter and be denoted by K, so that from equa- 
tion (12) 

Thus the range on j ,  can be specified in terms of the load parameter as 

The power output can be represented as the volume integral of [T (-zi 
p = J [T. (-z)ldT = Lr2 (2ahjr)(-E,)r dr  

1 vol 

With equations (7), (12), and (14), this power becomes 
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ahrl 2 In (57 - w l B  2 2 PeK(l 2 - K) 

\ I /  P = 2mhrlj1V = 
(1  + PePi) [1 + 6f(l + PePi)] 

Since the volume of the generator is 7rh ( i  r - r;) the power density becomes 

2 2 2  PeK(l - K) 
- - P 

?rh(ri - r;) 
n =  

The maximum value for rI occurs for K = 1/2 for the case of constant conductivity. 
The effect of this constant conductivity restriction can be illustrated by comparison 

with results in reference 5. In figure 5 of that reference, the power density for a gen- 
erator with a plasma whose properties are calculated with the theory of electron heating 
is shown to be a maximum for load parameter of about 0.42. This difference must be 
noted when the generator is operating under conditions such that electron heating is 
likely to  be important. 

EFFICIENCY 

The efficiency of this generator may be defined as the ratio of the output power to 
the flow work per unit time done by the fluid. 
the electromagnetic-body force, the flow work per unit time is [-5 - ( T X  Efl so that 
the efficiency q becomes 

Since the only force considered herein is 

where 

P," [l + 6f(l  + Pepi)] 

(1  + PePiI2 + 6f(l + Pepi)] + [Pe6f(l + PePi)l 
70 = 

6 
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1 + 3( 1 + PePi)6f 
VO A =  

1 + (1  + PePi)6f 

A + qo 1 + 2 ( 1 +  PePi)6f 

1 + (1 + PePi)Sf TO 
E = - -  - 

2 

Differentiation of equation (16) shows that the efficiency is a maximum when 

and has a value given by 

- q0 - qmax 
A +  2 ( G +  1) 

SPECIFICATION OF MAGNETIC FIELD 

Although the parameters appearing in the expressions for the generator are arbi- 
t rary,  there a r e  some optimum values that can be specified. 
is a magnetic field which maximizes the efficiency and power density (ref. 6, figs. 5 ,  
6, and 7). To examine this, introduce the following dimensionless variables: 

Because of ion slip there 

where 6, is a modified intera tion parameter; p is the ratio f electron to ion m bil- 
ity; and z is an ion slip term. The parameters 6, and p do not depend upon B 
since the plasma properties pe, pi, and uo a r e  assumed constant. Then by substitu- 
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tion in equation (15) the power density may be written as 

2K(1 - K)pv:yScz2 
ll= 

The value of z for which II as well as the total power output is a maximum is deter- 
mined from arI/az = 0 

(2 1) 2 6,fz(l+ z ) ( l  - 2) + pz = (2 + 1) (z - 2) 

The power output of the generator (but not the power density) also has a maximum 
with respect to variation in the radius ratio. This maximum occurs when 

6,[(y - 1) - 2f]z(z + 1) - pz = (1 + z) 2 

where 

2 

y =  (;) 
Equations (21) and (22) determine conditions for which the power output is maximized. 
Thus, for specified 6, and p (which a r e  parameters determined by the fluid proper- 
ties, generator inlet size, and generator operating conditions) the optimum magnetic 
field and outside radius may be obtained from 

(z2 - 1) 
z [y - 1 - (z  + l)f] 

6 =  
C 

2 
(24) 3 (z 

z - l)(y - 1 - 2f) - 
y - 1 - (2 + l ) f  

P =  [' 
These functions a r e  shown in figure 2. 
the input kinetic-energy rate) is given by 

The resulting maximum power output (divided by 
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102 

and is shown in figure 3. 
shown in figure 4. The ranges shown for the dimensionless variables are those that 
might occur in actual generators. 

The maximum efficiency, calculated from equation (18), is 

COMPARISON WITH LINEAR HALL GENERATOR 

The power-output density for a linear Hall generator is given as (ref. 7, 
eq. (14.43)) 
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Figure 3. - Power output as function of modified interaction parameter for specified values of mobility ratio. 

1 + Pepi Y 

It can be shown from equations (20) and (26) that, since 6 c -  f > 0 and P e P. i -  > 0, the 
power density ratio II/rIQ < - 1. 
equations (23) and (24). It may be seen that the ratio decreases with increasing values 
of the sl ip parameter. 

This ratio is plotted in figure 5 using the results of 

The efficiency of the linear generator is (ref. 7, eq. (14.50)) 
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Figure 4. - Efficiency as funct ion of modified interaction parameter for various mobility ratios. 
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Figure 5. - Power density ratio as funct ion of slip parameter 
for various mobility ratios at optimum magnetic field and 
radius ratio. 

This is equal to the disk-generator effi- 
ciency when f = 0, and has a maximum 
when the load parameter KQ is 

The efficiency at this value of KQ be- 
comes 

(77l) = 
max 
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The ratio of efficiencies can be expressed as 

1.0 2.0 3.0 4.0 5.0 
Slip parameter, pe, pi 

Figure 6. - Efficiency ratio as funct ion of 
s l ip parameter for various mobility 
ratios at optimum magnetic field and 
radius ratio. 

and, since from equation (17) 

then 

This ratio is plotted in figure 6, using the values 
from equations (23) and (24). The efficiency ratio 
is seen to be an increasing function of the slip 
parameter. 

CONCLUDING REMARKS 

The results of the calculations indicate that the disk generator is quite inferior in 
performance to the linear generator. For small values of the slip parameter the effi- 
ciency is much less  and for large values of the slip parameter the power density is much 
less. However, it must be remembered that this comparison was made on the basis of 
maximum power output of the disk generator. Nevertheless, it appears that the disk- 
generator performance is so inferior that the greater benefits of the electron heating (as 
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indicated in reference 3, (figs. 6 and 10) a r e  inadequate to make its performance com- 
petitive with that of the linear generator. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, May 14, 1965. 
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APPENDIX - SYMBOLS 

-L 

B 

E 

f 

h 

+ 

-c 

j 

K 

P 

P 

r 

1 ' 9  cp,z 
A A  A 

-c 
U 

V 

V 

W 

Y 

Z 

magnetic field strength 

electric field strength 

function of radius ratio 

spacing between disks 

current density 

load parameter 

power output 

pressure 

radial coordinate 

unit vectors in coordinate 
directions 

velocity 

load voltage 

radial velocity 

electron and ion Hall parameters 

interaction parameters, eq. (19a) 

efficiency parameters, eq. (17) 

efficiency 

mobility ratios, eq. (19b) 

electron and ion mobilities 

power densities 

density 

electrical conductivities 

volume element 

Subscripts : 

Q linear generator 

oc open circuit 

sc short circuit 

r radial component 

1 inlet condition 

cp azimuthal component 

azimuthal velocity 

square of radius ratio (r/r 1) 

magnetic-field parameter, 

2 

eq. (19c) 
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